Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Chloro-6-hydroxy-7,8-dimethyl-chroman-2-one

Scott A. Cameron, Shailesh K. Goswami, Lyall R. Hanton, C. John McAdam, Stephen C. Moratti and Jim Simpson*
Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Received 15 July 2011; accepted 20 July 2011
Key indicators: single-crystal X-ray study; $T=89 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA ; R$ factor $=$ $0.050 ; w R$ factor $=0.143$; data-to-parameter ratio $=14.4$.

In the title molecule, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{3}$, the fused pyran ring adopts a half-chair conformation. In the crystal, intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules into chains along [100]. These chains are interconnected by weak intermolecular C$\mathrm{H} \cdots \mathrm{O}$ contacts which generate $R_{2}^{2}(8)$ ring motifs, forming sheets parallel to (001). Tetragonal symmetry generates an equivalent motif along b. Furthermore, the sheets are linked along the c axis by offset $\pi-\pi$ stacking interactions involving the benzene rings of adjacent molecules [with centroidcentroid distances of 3.839 (2) A], together with an additional weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, resulting in an overall threedimensional network.

Related literature

For the synthesis of the starting materials, see: Fieser \& Ardao (1956); Bishop et al. (1963). For related structures, see: Budzianowski \& Katrusiak (2002); Goswami et al. (2011). For standard bond lengths, see Allen et al. (1987). For hydrogenbond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{3} \\
& M_{r}=226.65 \\
& \text { Tetragonal, } P \overline{4} 2_{1} c \\
& a=16.1375(6) \AA \\
& c=7.5878(6) \AA \\
& V=1976.24(19) \AA^{3}
\end{aligned}
$$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker 2009)
$T_{\text {min }}=0.792, T_{\text {max }}=1.00$

22360 measured reflections 2030 independent reflections 1618 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.095$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.143$
$S=1.07$
2030 reflections
141 parameters
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.39 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983),
859 Friedel pairs
Flack parameter: -0.04 (12)

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 84 \cdots \mathrm{O} 9^{\text {i }}$	0.99	2.55	3.463 (5)	154
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 1^{\text {ii }}$	0.99	2.64	3.588 (5)	160
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 9^{\text {ii }}$	0.99	2.68	3.357 (5)	126
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O} 9^{\text {iiii }}$	0.78 (4)	2.12 (5)	2.748 (4)	137 (4)
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.99	2.39	3.328 (5)	158

Symmetry codes: (i) $-x+1,-y+1, z$; (ii) $-y+1, x,-z+2$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$;
(iv) $-y+\frac{1}{2},-x+\frac{1}{2}, z-\frac{1}{2}$.

Data collection: APEX2 (Bruker 2009); cell refinement: SAINT (Bruker 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter \& Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5289).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bishop, C. A., Porter, R. F. \& Tong, L. K. J. (1963). J. Am. Chem. Soc. 85, 39913998.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Budzianowski, A. \& Katrusiak, A. (2002). Acta Cryst. B58, 125-133.
Fieser, L. F. \& Ardao, M. I. (1956). J. Am. Chem. Soc. 78, 774-781.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. \& Simpson, J. (2011). Acta Cryst. E67, o1566-o1567.

organic compounds

Hunter, K. A. \& Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

5-Chloro-6-hydroxy-7,8-dimethylchroman-2-one

S. A. Cameron, S. K. Goswami, L. R. Hanton, C. J. McAdam, S. C. Moratti and J. Simpson

Comment

The title compound (I) was isolated as an intermediate during the synthesis of redox-active quinone monomers currently of interest to us in our electro-mechanical actuator programme.

Compound (I), Fig 1, consists of a chromanone unit with an OH substituent at C 4 , a chloro substituent at C 5 and methyl substituents on C 2 and C 3 . The fused C1/C6-C9/O1 ring is in a half-chair conformation. Bond distances (Allen et al., 1987) and angles are normal and similar to those in closely related structures (Budzianowski \& Katrusiak, 2002; Goswami et al., 2011).

Classical $\mathrm{O} 4-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O} 9^{\text {iii }}$ hydrogen bonds link molecules into chains along a. These chains are interconnected by weak $\mathrm{C} 8 — \mathrm{H} 8 \mathrm{~A} \cdots \mathrm{O} 9^{\mathrm{i}}$ contacts which generate $R_{2}^{2}(8)$ ring motifs (Bernstein et al., 1995) forming sheets in (0 0 1), Fig 2. Tetragonal symmetry generates an equivalent motif along b. These sheets are stacked along c by offset $\pi-\pi$ stacking interactions involving the benzene rings of adjacent molecules with centroid to centroid distances of 3.839 (2) \AA together with an additional $\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B} \cdots \mathrm{O} 4^{\text {iv }}$ hydrogen bond, Fig 3, resulting in a three dimensional network structure, Fig 4.

Experimental

The title compound was synthesized in three steps. In the first step trimethyl-p-hydroquinone (Fieser \& Ardao, 1956) (15.2 $\mathrm{g}, 100 \mathrm{mmol}$) was oxidized using sodium dichromate $(10.8 \mathrm{~g}, 41 \mathrm{mmol})$ in acetic acid $(50 \mathrm{ml})$. The product was characterized using NMR spectroscopy and the data were consistent with reported data of trimethyl-p-benzoquinone. The second step (chlorination) is an alternative to the existing literature (Bishop et al., 1963). Trimethyl-p-benzoquinone ($10 \mathrm{~g}, 67 \mathrm{mmol}$) was added to conc. hydrochloric acid $(100 \mathrm{ml})$ with vigorous stirring. The resulting suspension was heated to reflux for 3 hr . After dilution with water the solid was filtered out and re-dissolved in aqueous acetic acid. Aqueous sodium dichromate (10 $\mathrm{g}, 38 \mathrm{mmol}$) was added in portions. After the mixture had stood for 15 min , a yellow solid was precipitated by dilution with water. Crystallization from ethanol-water solution gave a yellow material, m.p. 337-338K; (lit. m.p. 337-338K). In the final step, a solution of methyl malonate $(5.7 \mathrm{~g}, 43 \mathrm{mmol})$ in dry $\mathrm{MeOH}(25 \mathrm{ml})$ was refluxed for one hour with finely powdered $\mathrm{MgOMe}(3.85 \mathrm{~g}, 70 \mathrm{mmol})$. A solution of chlorotrimethyl-p-quinone ($4 \mathrm{~g}, 21 \mathrm{mmol}$) in dry $\mathrm{MeOH}(25 \mathrm{ml})$ was added dropwise to the refluxing solution and reflux continued for 13 hr . The solid was removed from the cooled mixture, washed with ether and carefully mixed with $\mathrm{HCl}(10 \%, 50 \mathrm{ml})$ and stirred at 283 K to remove impurities. The yellow solid product (3 $\mathrm{g})$ was filtered out and dissolved in acetone and stirred with dil. hydrochloric acid (100 ml). The resulting white suspension was then refluxed for 5 hr . The solution was cooled and extracted with ether $(3 \times 30 \mathrm{~mL})$ and the combined organic extracts washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. To the crude residue in toluene $(60 \mathrm{ml})$, 4-methylbenzenesulfonic acid $(0.47 \mathrm{~g}, 27 \mathrm{mmol})$ was added with stirring, and the mixture then refluxed. After 12 hr , the nearly colourless solution was cooled to room temp. and extracted with EtOAc $(3 \times 30 \mathrm{ml})$. The organic extract was washed with sat. aqueous NaHCO_{3} and the aqueous layer back-extracted once with EtOAc (30 ml). The combined organic extracts were washed with brine and dried over MgSO_{4}. X-ray quality crystals of the title compound, 5-chloro-6-hydroxy-7,8-dimethylchroman-2-one were

supplementary materials

obtained from EtOAc/hexane (1.76 g, 80\%): m.p. $139-41^{\circ} \mathrm{C} ; \mathrm{FT}-\mathrm{IR} \mathrm{cm}{ }^{-1} 1777(\mathrm{O}-\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.5(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.0$, 12.6, 22.0, 28.6,115.1, 117.8, 123.8, 125.0, 143.8, 145.9, 165.3.

Refinement

The OH hydrogen atom was located in a difference Fourier map and refined freely with $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{O})$. Methyl and methylene H -atoms were refined using a riding model with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.98 \AA, U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl and $0.99 \AA$, $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for methylene.

Figures

Fig. 1. The molecular structure of (I) showing ellipsoids drawn at the 50% probability level.

Fig. 2. The (0001) layer of (I). Dashed lines show $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Fig. 3. The $\pi . . \pi$ stacking interactions in the structure of (I) with $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions drawn as dashed lines.

Fig. 4. Crystal packing of (I) viewed along the c axis showing the three- dimensional network.

5-Chloro-6-hydroxy-7,8-dimethylchroman-2-one

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{3}$
$M_{r}=226.65$
Tetragonal, $P \overline{4} 2_{1} c$
Hall symbol: P-4 2n
$a=16.1375$ (6) \AA
$c=7.5887(6) \AA$
$V=1976.24$ (19) \AA^{3}
$Z=8$
$D_{\mathrm{x}}=1.524 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1966 reflections
$\theta=2.5-20.6^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=89 \mathrm{~K}$
Needle, colourless
$0.40 \times 0.07 \times 0.05 \mathrm{~mm}$
$F(000)=944$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
graphite
ω scans
Absorption correction: multi-scan
(SADABS; Bruker 2009)
$T_{\text {min }}=0.792, T_{\text {max }}=1.00$
22360 measured reflections

> 2030 independent reflections
> 1618 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.095$
> $\theta_{\max }=26.4^{\circ}, \theta_{\min }=3.9^{\circ}$
> $h=-20 \rightarrow 20$
> $k=-20 \rightarrow 19$
> $l=-9 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.143$
$S=1.07$
2030 reflections
141 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0781 P)^{2}+0.6384 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.33$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.39$ e \AA^{-3}
Absolute structure: Flack (1983), 859 Friedel pairs
Flack parameter: -0.04 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations

supplementary materials

between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
O1	$0.29181(15)$	$0.46995(15)$	$0.9081(4)$	$0.0286(6)$
C1	$0.2457(2)$	$0.3970(2)$	$0.8839(5)$	$0.0246(8)$
C2	$0.1624(2)$	$0.4026(2)$	$0.9338(5)$	$0.0246(8)$
C21	$0.1277(2)$	$0.4829(2)$	$1.0015(6)$	$0.0295(9)$
H2A	0.1709	0.5132	1.0655	0.044^{*}
H2B	0.0812	0.4715	1.0810	0.044^{*}
H2C	0.1083	0.5165	0.9021	0.044^{*}
C3	$0.1126(2)$	$0.3318(2)$	$0.9168(5)$	$0.0243(8)$
C31	$0.02056(19)$	$0.3310(2)$	$0.9744(4)$	$0.0166(7)$
H3A	-0.0132	0.3587	0.8847	0.025^{*}
H3B	0.0148	0.3602	1.0870	0.025^{*}
H3C	0.0019	0.2736	0.9879	0.025^{*}
C4	$0.1472(2)$	$0.2595(2)$	$0.8461(5)$	$0.0239(8)$
O4	$0.09528(17)$	$0.19372(16)$	$0.8261(4)$	$0.0308(7)$
H4O	$0.121(3)$	$0.162(3)$	$0.769(6)$	0.037^{*}
C5	$0.2308(2)$	$0.2574(2)$	$0.8003(5)$	$0.0256(8)$
C15	$0.27140(6)$	$0.16405(6)$	$0.72670(15)$	$0.0370(3)$
C6	$0.2815(2)$	$0.3256(2)$	$0.8168(5)$	$0.0253(8)$
C7	$0.3714(2)$	$0.3268(2)$	$0.7691(6)$	$0.0294(9)$
H7A	0.3812	0.2882	0.6699	0.035^{*}
H7B	0.4045	0.3074	0.8709	0.035^{*}
C8	$0.3994(2)$	$0.4131(3)$	$0.7170(6)$	$0.0347(9)$
H8A	0.4607	0.4149	0.7194	0.042^{*}
H8B	0.3815	0.4239	0.5943	0.042^{*}
C9	$0.3668(2)$	$0.4805(2)$	$0.8318(6)$	$0.0279(9)$
O9	$0.40023(17)$	$0.54650(16)$	$0.8556(4)$	$0.0348(7)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0223(13)$	$0.0216(13)$	$0.0419(16)$	$0.0005(11)$	$0.0013(11)$	$-0.0028(11)$
C1	$0.0241(19)$	$0.0182(17)$	$0.032(2)$	$-0.0010(15)$	$-0.0035(15)$	$0.0018(16)$
C2	$0.0260(19)$	$0.0201(18)$	$0.0278(19)$	$0.0045(16)$	$-0.0020(16)$	$0.0018(15)$
C21	$0.027(2)$	$0.0183(19)$	$0.043(2)$	$-0.0007(16)$	$-0.0001(18)$	$-0.0065(17)$
C3	$0.0210(19)$	$0.0255(18)$	$0.0263(18)$	$0.0006(15)$	$-0.0035(15)$	$0.0032(16)$
C31	$0.0134(16)$	$0.0129(16)$	$0.0235(18)$	$-0.0005(13)$	$-0.0005(13)$	$0.0001(14)$
C4	$0.0262(19)$	$0.0184(17)$	$0.0270(18)$	$-0.0008(14)$	$-0.0024(15)$	$0.0024(15)$

sup-4

supplementary materials

O4	$0.0281(15)$	$0.0227(14)$	$0.0418(17)$	$-0.0042(12)$	$-0.0004(13)$	$-0.0031(12)$
C5	$0.0287(19)$	$0.0177(17)$	$0.031(2)$	$0.0034(15)$	$-0.0003(17)$	$0.0001(15)$
C15	$0.0364(6)$	$0.0255(5)$	$0.0492(6)$	$0.0042(4)$	$-0.0028(5)$	$-0.0048(5)$
C6	$0.0259(19)$	$0.0222(19)$	$0.0279(19)$	$0.0049(15)$	$-0.0044(15)$	$0.0016(15)$
C7	$0.0213(17)$	$0.0247(18)$	$0.042(2)$	$0.0044(14)$	$-0.0024(17)$	$-0.0012(18)$
C8	$0.0212(19)$	$0.042(2)$	$0.041(2)$	$-0.0005(16)$	$-0.0001(17)$	$-0.002(2)$
C9	$0.0193(18)$	$0.025(2)$	$0.039(2)$	$0.0000(15)$	$-0.0036(16)$	$0.0061(17)$
O9	$0.0273(14)$	$0.0227(14)$	$0.0543(19)$	$-0.0014(12)$	$-0.0046(14)$	$0.0067(13)$

Geometric parameters ($\AA,{ }^{\circ}$)

O1-C9	1.353 (4)
O1-C1	1.404 (4)
C1-C6	1.386 (5)
C1-C2	1.399 (5)
C2-C3	1.402 (5)
C2-C21	1.503 (5)
C21-H2A	0.9800
C21-H2B	0.9800
$\mathrm{C} 21-\mathrm{H} 2 \mathrm{C}$	0.9800
C3-C4	1.401 (5)
C3-C31	1.549 (5)
C31-H3A	0.9800
С31-H3B	0.9800
C31-H3C	0.9800
C9-O1-C1	121.6 (3)
C6- $\mathrm{C} 1-\mathrm{C} 2$	123.6 (3)
C6- $\mathrm{C} 1-\mathrm{O} 1$	121.6 (3)
C2- $\mathrm{C} 1-\mathrm{O} 1$	114.8 (3)
C1-C2-C3	118.2 (3)
C1-C2-C21	120.4 (3)
C3-C2-C21	121.3 (3)
$\mathrm{C} 2-\mathrm{C} 21-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 21-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 21-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 21-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 21-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 21-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.1 (3)
C4-C3-C31	118.9 (3)
C2-C3-C31	122.1 (3)
C3-C31-H3A	109.5
C3-C31-H3B	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 31-\mathrm{H} 3 \mathrm{~B}$	109.5
C3-C31-H3C	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 31-\mathrm{H} 3 \mathrm{C}$	109.5
H3B-C31-H3C	109.5
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5$	123.3 (3)
O4-C4-C3	116.6 (3)

C4-O4	$1.361(4)$
C4-C5	$1.394(5)$
O4-H4O	$0.78(4)$
C5-C6	$1.377(5)$
C5-C15	$1.735(3)$
C6-C7	$1.495(5)$
C7-C8	$1.517(5)$
C7-H7A	0.9900
C7-H7B	0.9900
C8-C9	$1.489(6)$
C8-H8A	0.9900
C8-H8B	0.9900
C9-O9	$1.207(4)$
C5-C4-C3	$120.1(3)$
C4-O4-H4O	$104(3)$
C6-C5-C4	$122.2(3)$
C6-C5-C15	$120.0(3)$
C4-C5-C15	$117.8(3)$
C5-C6-C1	$116.8(3)$
C5-C6-C7	$124.3(3)$
C1-C6-C7	$118.9(3)$
C6-C7-C8	$111.3(3)$
C6-C7-H7A	109.4
C8-C7-H7A	109.4
C6-C7-H7B	109.4
C8-C7-H7B	109.4
H7A-C7-H7B	108.0
C9-C8-C7	$114.4(3)$
C9-C8-H8A	108.7
C7-C8-H8A	108.7
C9-C8-H8B	108.7
C7-C8-H8B	108.7
H8A-C8-H8B	107.6
O9-C9-O1	$116.5(4)$
O9-C9-C8	$125.1(4)$
O1-C9-C8	

supplementary materials

$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$15.2(5)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-165.2(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.7(6)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.9(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 21$	$-178.5(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 21$	$1.9(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.8(5)$
$\mathrm{C} 21-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$177.4(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 31$	$177.9(3)$
$\mathrm{C} 21-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 31$	$-2.9(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	$-177.5(3)$
$\mathrm{C} 31-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	$2.8(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$2.5(6)$
$\mathrm{C} 31-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-177.2(3)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$177.9(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-2.0(6)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 15$	$-4.0(5)$

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 5$	$176.0(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.8(6)$
$\mathrm{C} 15-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-177.1(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-179.8(4)$
$\mathrm{C} 15-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$2.2(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.2(6)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$179.3(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-179.6(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$0.0(6)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$152.5(4)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-28.2(5)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$42.6(5)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9-\mathrm{O} 9$	$177.5(4)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$1.3(5)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 9$	$153.5(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 1$	$-30.7(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8 — \mathrm{H} 8 \mathrm{~A} \cdots \mathrm{O} 9^{\mathrm{i}}$	0.99	2.55	$3.463(5)$	154.
$\mathrm{C} 7 — \mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.99	2.64	$3.588(5)$	160.
$\mathrm{C} 7 — \mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 9^{\mathrm{ii}}$	0.99	2.68	$3.357(5)$	126.
$\mathrm{O} 4 — \mathrm{H} 4 \mathrm{O} \cdots \mathrm{O} 9^{\mathrm{iii}}$	$0.78(4)$	$2.12(5)$	$2.748(4)$	$137(4)$
$\mathrm{C} 8 — \mathrm{H} 8 \mathrm{~B} \cdots \mathrm{O} 4^{\mathrm{iv}}$	0.99	2.39	$3.328(5)$	158.

Symmetry codes: (i) $-x+1,-y+1, z$; (ii) $-y+1, x,-z+2$; (iii) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (iv) $-y+1 / 2,-x+1 / 2, z-1 / 2$.

Fig. 1

supplementary materials

Fig. 2

Fig. 3

supplementary materials

Fig. 4

